Imputing missing distances in molecular phylogenetics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imputing responses that are not missing

We consider estimation of linear functionals of the joint law of regression models in which responses are missing at random. The usual approach is to work with the fully observed data, and to replace unobserved quantities by estimators of appropriate conditional expectations. Another approach is to replace all quantities by such estimators. We show that the second method is usually better than ...

متن کامل

Cost-Sensitive Imputing Missing Values with Ordering

Missing value is an unavoidable problem when dealing with real world data sources, and various approaches for dealing with missing data have been developed. In fact, it is very important to consider the imputation ordering (ordering means which missing value should be imputed at first with the help of a specific criterion) during the imputation process, because not all attributes have the same ...

متن کامل

SAS· Macros Useful in Imputing Missing Survey Data

After survey data are collected, data items for which no response was given must be dealt with. In one commonly used procedure, hot deck imputation, a value from an item respondent is donated to a similar item nonrespondent for whom the value is missing. Using this procedure, nonresponse bias can be minimized for point estimates produced from the imputation-revised data set, and the underlying ...

متن کامل

Development of Improved Models for Imputing Missing Traffic Counts

Estimating missing values is known as data imputation. A literature review indicates that many highway and transportation agencies in North America and Europe use various traditional methods to impute their traffic counts. These methods can be broadly categorized into factor and time series analysis approaches. However, little or no research has been conducted to assess the imputation accuracy....

متن کامل

Energy-Based Temporal Neural Networks for Imputing Missing Values

Imputing missing values in high dimensional time series is a difficult problem. There have been some approaches to the problem [11, 8] where neural architectures were trained as probabilistic models of the data. However, we argue that this approach is not optimal. We propose to view temporal neural networks with latent variables as energy-based models and train them for missing value recovery d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PeerJ

سال: 2018

ISSN: 2167-8359

DOI: 10.7717/peerj.5321